skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Liming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    By combining tandem asymmetric gold catalysis and subsequent stereoconvergent hydrolysis of enol ester in a one‐pot process, hydroxylated propargylic esters are converted into chiral β‐oxygenated ketones with mostly good enantiomeric ratios and in largely good to excellent yields. The product chiral center is formed via stereoselective cyclization of a hydroxylated allenyl ester intermediate, which is enabled by asymmetric gold‐ligand cooperation.

     
    more » « less
  2. Abstract

    By employing a chiral bifunctional phosphine ligand, a gold(I)‐catalyzed efficient and highly enantioselective dearomatization of phenols is achieved via versatile metal‐ligand cooperation. The reaction is proven to be remarkably general in scope, permitting substitutions at all four remaining benzene positions, accommodating electron‐withdrawing groups including strongly deactivating nitro, and allowing carbon‐based groups of varying steric bulk includingtert‐butyl at the alkyne terminus. Moreover, besidesN‐(o‐hydroxyphenyl)alkynamides, the corresponding ynoates and ynones are all suitable substrates. Spirocyclohexadienone‐pyrrol‐2‐ones, spirocyclohexadienone‐butenolides, and spirocyclohexadenone‐cyclopentenones are formed in yields up to 99 % and with ee up to 99 %.

     
    more » « less
  3. Abstract

    By employing a chiral bifunctional phosphine ligand, a gold(I)‐catalyzed efficient and highly enantioselective dearomatization of phenols is achieved via versatile metal‐ligand cooperation. The reaction is proven to be remarkably general in scope, permitting substitutions at all four remaining benzene positions, accommodating electron‐withdrawing groups including strongly deactivating nitro, and allowing carbon‐based groups of varying steric bulk includingtert‐butyl at the alkyne terminus. Moreover, besidesN‐(o‐hydroxyphenyl)alkynamides, the corresponding ynoates and ynones are all suitable substrates. Spirocyclohexadienone‐pyrrol‐2‐ones, spirocyclohexadienone‐butenolides, and spirocyclohexadenone‐cyclopentenones are formed in yields up to 99 % and with ee up to 99 %.

     
    more » « less
  4. null (Ed.)